<delect id="3po7h"><sup id="3po7h"></sup></delect>

<i id="3po7h"><option id="3po7h"><listing id="3po7h"></listing></option></i>

<object id="3po7h"></object>

<optgroup id="3po7h"><del id="3po7h"></del></optgroup>
<font id="3po7h"></font>

    <thead id="3po7h"><del id="3po7h"></del></thead><delect id="3po7h"><option id="3po7h"></option></delect>

    <thead id="3po7h"><ol id="3po7h"></ol></thead>
    ENGLISH | 聯系我們
    學術動態 |

    當前位置: 首頁 > 學術動態 > 正文

    【11月9日】學術報告:Fractals and Fractal Transformations(分形與分形變換)

    來自:       作者:   編輯:       時間:2017-11-07

       

    報告題目:Fractals and Fractal Transformations(分形與分形變換)

    時間:2017119  下午15:00

    地點:虎溪校區理科樓LA106教室

    報告人:Pro. Michael Barnsley  (Mathematical Sciences Institute, Australian National University)


    報告人簡介:



    Michael BARNSLEY is a leading figure in the world of fractals. He obtained his BA (1968) in mathematics at Oxford University, UK and a PhD (1972) in theoretical chemistry at Wisconsin, USA. He has been a professor at Georgia Institute of Technology and a founded the company Iterated Systems Inc in 1987. He is the author of over 200 publications including the books Fractals Everywhere and SuperFractals.

      

    ABSTRACT: Fractal transformations are a way of changing smooth objects into rough ones, and vice versatile. They have exciting potential applications in science and art. This lecture will explain in simple terms, what fractals and fractal transformations are, and how they can be built and explored (easily) using the "Chaos Game.

     

    報告提要:分形變換是一種將光滑物體變為粗糙物體的方法。他們在科學和藝術方面有令人興奮的潛在應用。本講座將簡單地解釋,什么是分形和分形變換,以及如何使用“混沌游戲”構建和探索。

      

    分形幾何是描述世界本來面貌的數學新分支,他比用一系列直線或者球體描述得更好。


    如圖,蕨類植物是最常見的自相似幾何,這意味著不管放大或縮小多少倍,它們的團都可以進行數學上的推導和重現。這種蕨類圖形被稱為巴恩斯利蕨,是以首創者邁克·巴恩斯利的名字命名的,用于描述這種分形圖形的數學公式第一次表明,雖然混沌遵循建立在非線性迭代方程上的確定規則,但它天生無法預測。

     


    秒速赛车彩票app下载安装